

 Guideline for Selecting and

Tailoring a Life Cycle

Number: 580-GL-069-01 Approved By: (signature)
Effective Date: September 15, 2007 Name: John Donohue
Expiration Date: September 15, 2012 Title: Assoc. Division Chief

Responsible Office: Information Systems Division Asset Type: Guideline
Title: Guidelines for Selecting & Tailoring a Life Cycle PAL Number: 1.2.2.1

Purpose The purpose of this document is to provide uniform guidance for the selection

and possible tailoring of a software development life cycle.

Scope This guideline should be used when defining the life cycle for a software

development or maintenance effort.

Guideline The software life cycle is the set of phases needed to complete the software

development or maintenance process. The Life Cycle description identifies
the order in which those phases are executed, the products expected from
each phase, and the exit criteria indicating that the phase has been
successfully completed.
Step 1: Identify the life cycle model to be used. There are several life cycle
models that can be used as the basis for defining a software development life
cycle, including the waterfall model, the incremental model, and the package-
based model, among others. Each model has its strengths and weaknesses,
and no one model is best for all situations. Each model has steps for
requirements, design, implementation, testing, release to operations,
maintenance, and retirement.
Five life-cycle models are summarized in Addendum A. These models are
recommended on the basis of NASA’s experience with applying them
successfully at various centers. Development is addressed before
maintenance, and the development life-cycle models are ordered from the
simplest and most familiar to what may be the most complex and least
familiar.

 Waterfall development life-cycle model
 Incremental development life-cycle model
 Evolutionary development life-cycle model
 Package-based development life-cycle model
 Legacy system maintenance life-cycle model

Another life cycle model may be used if deemed appropriate.
Step 2: Once a model is selected, the phases appropriate to the
development effort must be identified. Determine what phases (if any) have
already been completed. For example, if the requirements have been
completed and a requirements review held, you may be able to begin at the

Guideline for Selecting and Tailoring page 1 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

Guideline for Selecting and Tailoring page 2 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

architecture or design phase.
Step 3: Once you have determined which phases are appropriate for your
effort, tailor the definition of those phases as necessary. For each phase,
determine the following:

 The environment that you establish for the phase (this will include
the type of hardware or tools that will be necessary (e.g., hardware
and tools for requirements definition, design, development, or test)).

 The list of products that you expect to produce as part of the phase
(e.g., documents, data, and/or software)

 The list of stakeholders that you must involve during the phase (e.g.,
stakeholders from whom you need input, approval, or support).

 The exit criteria that signify the end of the phase (e.g., the
appropriate end-of-phase review).

Document your tailored life cycle in your Product Plan. See Addendum B for
an example life cycle description. Remember to check that the work
processes (such as design or test processes) required for each life cycle
phase of the effort have been identified (and tailored where necessary.)

Measures Recommended Measures: No measures have been identified for selecting

and tailoring a life cycle activity. However, measures should be defined for
activities within each life cycle phase as appropriate. Those measures are
identified in the Measurement and Analysis section of the Software
Management Plan/Product Plan (SMP/PP).
Required Measures: None

References For further information on this topic, please see:

• NASA Software Management Guidebook, NASA-GB-001-96, November
1996

• Standard for Developing a Software Project Life Cycle Process, IEEE
P1074/D 5.5, January 2006

Tools and
Templates

The following Tools are available to assist in defining the life cycle phases.

 Name Description
 Software Management

Plan/Product Plan
Boilerplate Tool

The SMP/PP boilerplate contains a life cycle
description that can be easily tailored for your life
cycle. It documents the Incremental Life Cycle
Model by default.

Change History Version Date Description of Improvements
 1.0 9/13/07 Initial version approved by CCB

http://software.gsfc.nasa.gov/toolsDetail.cfm?selTool=1.2.6.2
http://software.gsfc.nasa.gov/toolsDetail.cfm?selTool=1.2.6.2
http://software.gsfc.nasa.gov/toolsDetail.cfm?selTool=1.2.6.2

Guideline for Selecting and Tailoring page 3 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

Addendum A
Summary of Recommended Life Cycle Models

1. Waterfall Development Life-Cycle Model
The waterfall (single-build) life-cycle model is essentially a once-through, do-each-step-once
approach. Simplistically, determine user needs, define requirements, design the system,
implement the system, test, fix, and deliver the system.
Advantages:

 Well-studied, well-understood, and well-defined
 Easy to model and understand
 Easy to plan and monitor
 Many management tools exist to support this life-cycle model

Disadvantages
 Most if not all requirements must be known up front
 Does not readily accommodate requirements changes
 Product is not available for initial use until the project is nearly done

Most appropriate when ...
 Project is similar to one done successfully before
 Requirements are quite stable and well-understood
 The design and technology are proven and mature
 Total project duration is relatively short (less than a year)
 Customer does not need any interim releases

Major products and milestone reviews for this life-cycle model are summarized below.
Life-cycle phase Major products Milestone reviews

Project planning Software plan None
Requirements definition and
analysis

 Software requirements
document

Software Requirements
Review (SRR)

Architectural design Preliminary software design
document

 Test plan
 Preliminary user’s guide

Preliminary Design Review
(PDR)

Detailed design Detailed software design
document

 Requirements Traceability
Matrix

Critical Design Review (CDR)

Implementation and testing Unit-level design
 Implemented, tested
software

 Acceptance test procedures
 Draft user’s guide
 Updated Requirements
Traceability Matrix

Test Readiness Review (TRR)

Acceptance testing Acceptance -tested software
 Acceptance test report
 Final user’s guide
 As-built software description

Acceptance Test Readiness
Review (ATRR)

Guideline for Selecting and Tailoring page 4 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

2. Incremental Development Life-Cycle Model
The incremental (multi-build) life-cycle model determines user needs and defines a subset of the
system requirements, then performs the rest of the development in a sequence of builds. The first
build incorporates part of the planned capabilities, the next build adds more capabilities, and so
on, until the system is complete. This has been called a build-a-little, test-a-little approach.
Advantages

 Reduces risks of schedule slips, requirements changes, and acceptance problems
 Increases manageability
 Interim builds of the product facilitate feeding back changes in subsequent builds
 Interim builds may be delivered before the final version is done; this allows end users to

identify needed changes
 Breaks up development for long lead time projects
 Allows users to validate the product as it is developed
 Allows software team to defer development of less well understood requirements to later

releases after issues have been resolved
 Allows for early operational training on interim versions of the product
 Allows for validation of operational procedures early
 Includes well-defined checkpoints with customer and users via reviews

Disadvantages
 Like the waterfall life-cycle model, most if not all requirements must be known up front
 Sensitive to how specific builds are selected
 Places products (particularly requirements) under configuration control early in the life

cycle, thereby requiring formal change control procedures that may increase overhead,
particularly if requirements are unstable

Most appropriate when ...
 Project is similar to one done successfully before
 Most of the requirements are stable and well-understood; but some TBDs may exist
 The design and technology are proven and mature
 Total project duration is greater than one year or customer needs interim release(s)

Major products and milestone reviews for this life-cycle model are summarized below.

Life-cycle phase Major products Milestone reviews
Concept Definition Software plan

 Operations concept
None

Requirements Definition Software requirements
document

 Requirements traceability
matrix (RTM)

Software Requirements
Review (SRR)

Preliminary Design System software design
 Test plan
 Preliminary user’s guide
 Updated Requirements
Traceability Matrix

Preliminary Design Review
(PDR)

Detailed Design Detailed software design
document (through at least
the first build)

 Updated Requirements
Traceability Matrix

 Software design document

Critical Design Review (CDR)

Guideline for Selecting and Tailoring page 5 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

update (detailed through at
least the next build))

 Updated Requirements
Traceability Matrix

Implementation

 Unit test drivers, unit test
plans, unit test data, and
unit test reports

 Coded, unit tested,
integrated, and integration
tested software executables
Build integration test
procedures and test results

 Draft user’s guide
 Updated Requirements
Traceability Matrix

 Final Test Plan
 System Description
Document (Draft)

None

Build Testing Build test procedures, test
results, and test report

 Problem reports

Test Readiness Review (TRR)

System Testing Build-tested software
 System test procedures, test
results, and test report

 Problem reports
 Final user’s guide
 As-built software description
 Delivery Package

Acceptance Test Readiness
Review (ATRR)

3. Evolutionary Development Life-Cycle Model
Like the incremental development model, the evolutionary life-cycle model also develops a
system in builds, but differs from the incremental model in acknowledging that the user needs are
not fully understood and not all requirements can be defined up front. In the evolutionary
approach, user needs and system requirements are partially defined up front, and then refined in
each succeeding build. The system evolves as the understanding of user needs and the
resolution of issues occurs. Prototyping is especially useful in this life-cycle model.

The evolutionary development life-cycle model is sometimes referred to as a spiral development
model. This model is also sometimes referred to as a prototyping life-cycle model, but it should
not be confused with the prototyping technique. The evolutionary development is not usually
appropriate for development of critical mission software, since there is more difficulty in managing
it and measuring progress when using it.
Advantages

 Not all requirements need be known up front
 Addressing high risk issues (for example, new technologies or unclear requirements)

early may reduce risk
 Like the incremental life-cycle model, interim builds of the product facilitate feeding back

changes in subsequent builds
 Users are actively involved in definition and evaluation of the system

Guideline for Selecting and Tailoring page 6 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

 Prototyping techniques enable developers to demonstrate functionality to users with
minimal effort

 Even if time or money runs out, some amount of operational capability is available

Disadvantages

 Because not all requirements are well-understood up front, the total effort involved in the
project is difficult to estimate early. Therefore, expect accurate estimates only for the next
cycle, not for the entire development effort.

 Less experience on how to manage (progress is difficult to measure)
 Risk of never-ending evolution (for example, continual “gold plating”)
 May be difficult to manage when cost ceilings or fixed delivery dates are specified
 Will not be successful without user involvement

Most appropriate when ...

 Requirements or design are not well-defined, not well-understood, or likely to undergo
significant changes

 New or unproved technologies are being introduced
 System capabilities can be demonstrated for evaluation by users
 There are diverse user groups with potentially conflicting needs

Major products and milestone reviews for this life-cycle model are summarized below.

Life-cycle phase Major products Milestone reviews

Concept Definition Initial System Development Plan
to be updated in later phases

System Concept Review
(SCR)

Requirements and
architecture
definition

 Preliminary requirements
document

 Architectural design document
containing the infrastructure plus
the architecture of each release
as it evolves

 Requirements Traceability Matrix

Combined System
Requirements Review (SRR)
and System Design Review
(SDR)

Implementation Evolutionary Implementation Plan
 Iteration plan for each iteration
 Software product baseline
combining new, reused, and off-
the-shelf products

 Updated Requirements
Traceability Matrix

 Draft user documentation

Iteration assessments
Release testing after all
interations for the release
have been completed

Release Integration and
Test

 Release test procedures
 Integrated, tested software)
 Updated Requirements
Traceability Matrix

 Release test report
 Final user documentation

Acceptance Test Readiness
Review (ATRR)

Installation and
acceptance
Operations and
maintenance

These system life-cycle phases are identified for completeness but
are out of the scope of the software development life cycle.

Guideline for Selecting and Tailoring page 7 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

4. Package-Based Development Life-Cycle Model
The package-based development life-cycle model is used for system development based largely
on the use of commercial-off-the-shelf and Government off-the-shelf products and reusable
packages. Typically, some custom software development is needed to provide interfaces among
the non-developed items (NDIs).
Advantages

 Lower cost than developing equivalent functionality from scratch
 Cycle time also often lower than developing equivalent functionality from scratch
 Improves confidence in quality of the end product (since quality of NDIs is already known)

Disadvantages

 May result in compromises between desired functionality and functionality provided by
NDIs

 Maintainability may be more of a challenge because source of NDIs may not be the same
NASA organization (for example, requires third party to make changes, raises source
configuration management issues when NDI vendor releases updated versions)

Most appropriate when ...

 A significant portion of the functionality of a system can be provided by NDIs
Major products and milestone reviews for this life-cycle model are summarized below.

Life-cycle phase Major products Milestone reviews
Requirements Analysis
and Package
Identification

 System Development Plan
 Requirements document
 Strawman high-level architecture
 Candidate packages

System Requirements Review
(SRR)

Architectural Definition
and Package Selection

 Modified requirements document
 System architecture
 Final packages

System Design Review (SDR)

System Integration and
Test

 Delivered system User
demonstrations

Operational Readiness Review
(ORR)

Technology Update and
System Maintenance

 Enhanced system User demonstrations

5. Legacy System Maintenance Life-Cycle Model
The legacy system maintenance life-cycle model is used to apply fixes or minor enhancements to
an operational system. (Use a waterfall or incremental life-cycle model for major enhancements.)
Selected and sometimes abbreviated activities performed in the software development life cycles
are also performed during maintenance. The legacy system maintenance life-cycle model is
similar in nature to the waterfall life-cycle model; the primary difference is that the architectural
design has already been established.

Most appropriate when ...

 Maintenance release comprises only fixes and minor enhancements.

Major products and milestone reviews for this life-cycle model are summarized below.

Guideline for Selecting and Tailoring page 8 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

Life-cycle phase Major products Milestone reviews

Release planning

 Release contents agreement Release Contents Review
(RCR)

Requirements definition
and analysis

 Release requirements document Release Requirements Review
(RRR)

Design Release design document Release Design Review (RDR)
Implementation and
testing

 Unit-level design
 Implemented, tested software
 Release test plan and
procedures

 Draft user’s guide updates

Release Test Readiness
Review (TRR)

Release testing Release-tested software
 Release test report
 Final user’s guide updates
 As-built software description
updates

Acceptance Test Readiness
Review (ATRR)

Guideline for Selecting and Tailoring page 9 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

Addendum B
Example Software Development Life Cycle Description

After you have selected and tailored the life cycle model for your effort, document the life cycle by
describing the model and each applicable life cycle phase. The following table is an example life
cycle description for the Incremental Development Life Cycle Model. Use this example as a guide
for the format and level of detail required. Create your table by using the table below as a
template. Delete any phases that are not part of your life cycle model or are not applicable to your
effort. For each phase insert the information on: the environment needed for the phase; the
products that you expect to produce during the phase; the stakeholders that you must involve;
and the exit criteria that signify the end of the phase.

Note that the software development life cycle is a subset of the overall system life cycle. The
software development life cycle as shown in this table is consistent with the System Development
Life Cycle defined in NPR 7123.1.

Phase Development Activity

Concept Definition

The PDT formulates a conceptual architecture by working with the customer to
understand the system concept and high-level requirements and by looking for
similarities to previous systems. To the extent possible, the PDT uses his/her
experience to guide the customer in making trades affecting (or affected by)
the system.
The PDT develops an initial re-use strategy by identifying existing software
including commercial off the shelf (COTS) and Government off the shelf
(GOTS) software for potential use. The PDT also develops a preliminary
acquisition strategy by performing an initial make/buy analysis. The results of
this analysis document what portions of the system, if any, will be considered
for potential acquisition.
Planning activities are performed, including the definition of the WBS,
estimation of cost and effort, initial risk identification, planning for adequate
skilled staff. Budget and schedule are negotiated with the customer.
If portions of the system will potentially be acquired, the activities described in
the acquisition life cycle are initiated.

Environment • Requirements/Design Environment
Products • Operations concept

• Concept review materials
• SMP/PP signed and approved by signatories

Major Stakeholders • PDT
• Customer Management
• Branch Management
• Users

Exit Criteria • Concept review materials are reviewed and approved
• Action Items are assigned and scheduled for completion

Guideline for Selecting and Tailoring page 10 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

Phase Development Activity

Requirements
Definition

The PDT works closely with the customer to understand and document the
software requirements for the system.
Detailed software requirements, including interface and performance
requirements, are derived from customer requirements and documented. The
detailed requirements are analyzed and reviewed for completeness,
consistency, feasibility, and testability. Requirements that potentially drive
software design decisions (e.g., special timing requirements, checkpoint
restart) are identified.
A requirements traceability matrix (RTM) is produced, showing how the high-
level requirements flow down to detailed requirements.
The initial re-use strategy, risks, and planning parameters (e.g., schedules,
staffing, budgets, build/release plan) are reviewed and updated as appropriate.

Environment • Requirements/Design Environment
Products • Requirements Document(s)

• Requirements traceability matrix (RTM)
• Software Requirements Review (SRR) Materials

Major Stakeholders • PDT
• Customer Management
• Branch Management
• Users

Exit Criteria • SRR materials are reviewed and approved
• SRR Request For Action (RFAs) are assigned and scheduled for

completion
• Requirements are baselined and placed under configuration management.

Design Working from the requirements and conceptual design, requirements are
allocated to major subsystems. All internal and external interfaces are defined
to the subsystem level. Designs of high-level functions or objects are specified
and peer reviewed.
The PDT refines and extends the software architecture down to the unit level.
By successive refinement, they elaborate the design to produce “code-to”
specifications for each unit.
Selection of components and units for re-use are finalized.
The RTM is updated to show how the requirements flow down to design
components and software builds.

Environment • Requirements/Design Environment
Products • System Design

• Test Plan (Draft)
• Preliminary Design Review (PDR) Materials
• Critical Design Review (CDR) Materials

Major Stakeholders • PDT
• Customer Management
• Branch Management
• Users

Guideline for Selecting and Tailoring page 11 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

Phase Development Activity

Exit Criteria • PDR materials are reviewed and approved
• PDR RFAs are assigned and scheduled for completion
• CDR materials are reviewed and approved
• CDR RFAs are assigned and scheduled for completion

Implementation

New units are coded from design specifications and required modifications to
re-used units are made according to standards identified as applicable to the
effort.
Unit test plans and procedures with expected results are written. New and
modified units are unit tested according to applicable standards identified for
the effort. Unit test reports are written.
System components are integrated into a build. Build-integration test
procedures are written, executed, and test results are reviewed. Problem
reports are written and corrected as appropriate.
 “As-built” system documentation is drafted.
The RTM is updated to show how the detailed design flows down to software
units.

Environment • Development Environment
Products • Unit test drivers, unit test plans, unit test data, and unit test reports

• Build integration test procedures and test results
• Test Plan (Final)
• User’s Guide (Draft)
• System Description Document (Draft)
• Coded, unit tested, integrated, and integration tested software executables

Major Stakeholders • PDT
• Customer Management
• Branch Management
• Users

Exit Criteria
(for each build)

• Unit tests of each unit for a specified build are successfully executed in
accordance with the unit test plan.

• Build integration tests are successfully executed in accordance with
approved build-integration test procedures.

• Build-integration test reports are reviewed and approved.
Build Test Build test scenarios and test procedures are written, peer-reviewed, and

corrected.
Requisite test software and/or test equipment is configured, tested, and
verified for adequacy and correctness.
Build tests are conducted according to the test plan and associated
procedures. Build test reports are written and reviewed. Problem reports are
written and corrected as appropriate.
The RTM is updated to show how the detailed design flows down to build
tests.

Environment • Test Environment

Guideline for Selecting and Tailoring page 12 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

Phase Development Activity

Products • Build test procedures, test results, and test report
• Problem reports

Major Stakeholders • PDT
• Customer Management
• Branch Management
• Users

Exit Criteria
(for each Build)

• All build tests for the build are executed.
• All Build test results are analyzed, approved, and archived
• Problem reports are submitted
• Build Test Report is completed

System Test System test scenarios and detailed test procedures are written, peer-reviewed,
and corrected.
Requisite test software and /or test equipment is configured, tested, and
verified for adequacy and correctness.
System tests are conducted according to the Test Plan and associated
procedures. System test results are recorded and a System Test Report is
written and reviewed. Problem reports are written and corrected as
appropriate.
The RTM is updated to show how the detailed design flows down to system
tests.
The system and its associated documentation are packaged for delivery.

Environment • Test Environment
Products • System test procedures, test results, and test report

• Problem reports
• Acceptance Test Readiness Review (ATRR) materials
• Delivery Package

Major Stakeholders • PDT
• Customer Management
• Branch Management
• Users

Exit Criteria • Final system tests are successfully executed
• Build Test Report is completed
• ATRR materials are reviewed and approved
• Problem reports are submitted
• All critical problem reports are implemented, delivered, verified and

validated.
Post-Delivery Test
Support

The PDT provides technical support such as consulting and analyzing test
results as required during post-delivery test support. In the event that any
changes are required as a result of these tests, problem reports may be
generated and approved. Following design and implementation of corrections
for these problem reports, Build Test and System Test will be repeated, with
test upgrades as necessary to re-validate the updated system.

Guideline for Selecting and Tailoring page 13 September 13, 2007
a Life Cycle, Version 1.0

Check the Process Asset Library at http://software.gsfc.nasa.gov/process.cfm to obtain the latest version.
NOTE: Words or phrases shown in blue underlined contain links to additional information.

Guidance & tailoring information is shown in italics with gray background.

Phase Development Activity

Products • Updated and tested software executables (as needed)
• Documentation updates (as needed)

Major Stakeholders • PDT
• Customer Management
• Branch Management
• Users

	Title: Guidelines for Selecting & Tailoring a Life Cycle PAL Number: 1.2.2.1
	Version
	Date
	1.0
	9/13/07
	I

